石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。它的厚度大约为0.335nm,根据制备方式的不同而存在不同的起伏,通常在垂直方向的高度大约1nm左右,水平方向宽度大约10nm25nm,是除金刚石以外所有碳晶体(零维富勒烯,一维碳纳米管,三维体向石墨)的基本结构单元。

很早之前就有物理学家在理论上预言,准二维晶体本身热力学性质不稳定,在室温环境下会迅速分解或者蜷曲,所以其不能单独存在。[1]  直到2004年,英国曼彻斯特大学物理学家安德烈·盖姆康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,证实它可以单独存在,对于石墨烯的研究才开始活跃起来,两人也因此共同获得2010年诺贝尔物理学奖。

石墨烯目前最有潜力的应用是成为的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。

另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体分子(氦气)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板

作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为黑金,是新材料之王,科学家甚至预言石墨烯将彻底改变21世纪。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。[2] 

研究历史

实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。

石墨烯在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·盖姆Andre Geim)和克斯特亚·诺沃消洛夫(Konstantin Novoselov)发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。因此,在随后三年内安德烈·盖姆康斯坦丁·诺沃肖洛夫在单层和双层石墨烯体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,他们也因此获得2010年度诺贝尔物理学奖

在发现石墨烯以前,大多数物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,它的发现立即震撼了凝聚体物理学学术界。虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。

主要制备方法

石墨烯分为石墨烯粉体和石墨烯薄膜两大类。常见的石墨粉体生产的方法为机械剥离法、氧化还原法SiC外延生长法。石墨烯薄膜生产方法为化学气相沉积法CVD)。

一、石墨烯粉体生产方法

1、机械剥离法

机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。这种方法操作简单,得到的石墨烯通常保持着完整的晶体结构[3]  2004年英国两位科学使用透明胶带对天然石墨进行层层剥离取得石墨烯的方法,也归为机械剥离法,这种方法一度被认为生产效率低,无法工业化量产。

近年来,产业界对于石墨烯的生产方法进行了大量的研发创新,目前在厦门、广东等省市已经有几家公司攻克了低成本大规模制备石墨烯的生产瓶颈,使用机械剥离法工业化量出成本低、品质高的石墨烯。

2、氧化还原法

氧化还原法是通过使用硫酸、硝酸等化学试剂及高锰酸钾、双氧水等氧化剂将天然石墨氧化,增大石墨层之间的间距,在石墨层与层之间插入氧化物,制得氧化石墨(Graphite Oxide)。然后将反应物进行水洗,并对洗净后的固体进行低温干燥,制得氧化石墨粉体。通过物理剥离、高温膨胀等方法对氧化石墨粉体进行剥离,制得氧化石墨烯。最后通过化学法将氧化石墨烯还原,得到石墨烯(RGO)。这种方法操作简单,产量高,但是产品质量较低[4]  。氧化还原法使用硫酸、硝酸等强酸,存在较大的危险性,又须使用大量的水进行清洗,带大较大的环境污染。

使用氧化还原法制备的石墨烯,含有较丰富的含氧官能团,易于改性。但由于在对氧化石墨烯进行还原时,较难控制还原后石墨烯的氧含量,同时氧化石墨烯在阳光照射、运输时车厢内高温等外界每件影响下会不断的还原,因此氧化还原法生产的石墨烯逐批产品的品质往往不一致,难以控制品质。

目前不少人将氧化石墨、氧化石墨烯、还原氧化石墨烯概念理解混淆。氧化石墨呈棕色,为石墨与氧化物聚合体。 氧化石墨烯系将氧化石墨剥离至单层、双层或寡层后的产物,含有大量的含氧基团,因此氧化石墨烯不导电,氧化石墨烯性质活跃,在使用过程中特别是参与高温材料加工过程中,会不断还原并释放出二氧化硫等气体。 通过将氧化石墨烯还原之后的产品,才能称为石墨烯(还原氧化石墨烯)。

3SiC外延法

SiC外延法是通过在超高真空的高温环境下,使硅原子升华脱离材料,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。这种方法可以获得高质量的石墨烯,但是这种方法对设备要求较高。[5] 

二、石墨烯薄膜生产方法

CVD是使用含碳有机气体为原料进行气相沉积制得石墨烯薄膜的方法。这是目前生产石墨烯薄膜最有效的方法。这种方法制备的石墨烯具有面积大和质量高的特点,但现阶段成本较高,工艺条件还需进一步完善。由于石墨烯薄膜的厚度很薄,因此大面积的石墨烯薄膜无法单独使用,必须附着在宏观器件中才有使用价值,例如触摸屏、加热器件等。

主要分类(广义)

单层石墨烯

单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。

双层石墨烯

双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。

少层石墨烯

少层石墨烯(Few-layer):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。

多层或厚层石墨烯

多层或厚层石墨烯(multi-layer graphene):指厚度在10层以上10nm以下苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。

基本特性

强度与柔韧性

抗拉强度弹性模量分别为 125 GPa 1.1TPa杨氏模量约为42 N/m2,面积为1m2的石墨烯层片可承受4 kg的质量,其强度约为普通钢的100倍,用石墨烯制成的包装袋,可以承受大约2吨的重量,是目前已知的强度最大的材料。


导电导热性

电子迁移率可达到2×2625px2/V·s,约为硅中电子迁移率的140倍,砷化镓的20倍,温度稳定性高,电导率可达108Ω/ m,面电阻约为31Ω/sq310Ω/m2),比铜或银更低,是室温下导电最好的材料。比表面积大(2630m2/g),热导率(室温下是5000W·m-1·K-1)是硅的36倍,砷化镓的20倍,是铜(室温下401W·m·K)的十倍多。极高的强度与柔韧性,室温下最好的导电导热性使得石墨烯成为ITO氧化铟锡)的理想替代材料,并在柔性导电薄膜材料方面有重要应用。

光学性质

单层石墨烯对可见光以及近红外波段光垂直的吸收率仅为 2.3%,对所有波段的光无选择性吸收。线性光学性质:单层石墨烯的吸光率很高,对从可见光到太赫兹宽波段每层吸收 23% 光。非线性光学性质:当入射光的强度超过某一临界值时,石墨烯对其的吸收会达到饱和。这些特性可以使得石墨烯可以用来做被动锁模激光器。

主要应用

石墨烯对物理学基础研究有着特殊意义,它使一些此前只能纸上谈兵的量子效应可以通过实验来验证,例如电子无视障碍、实现幽灵一般的穿越。但更令人感兴趣的,是它那许多极端性质的物理性质。

因为只有一层原子,电子的运动被限制在一个平面上,石墨烯也有着全新的电学属性。石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。

在塑料里掺入百分之一的石墨烯,就能使塑料具备良好的导电性;加入千分之一的石墨烯,能使塑料的抗热性能提高30摄氏度。在此基础上可以研制出薄、轻、拉伸性好和超强韧新型材料,用于制造汽车、飞机和卫星。

随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,最先实现商业化应用的领域可能会是移动设备、航空航天、新能源电池领域。

消费电子展上可弯曲屏幕备受瞩目,成为未来移动设备显示屏的发展趋势。柔性显示未来市场广阔,作为基础材料的石墨烯前景也被看好。有数据显示2013年全球对手机触摸屏的需求量大概在9.65亿片。到2015年,平板电脑对大尺寸触摸屏的需求也将达到2.3亿片,为石墨烯的应用提供了广阔的市场。韩国三星公司的研究人员也已制造出由多层石墨烯等材料组成的透明可弯曲显示屏,相信大规模商用指日可待。

另一方面,新能源电池也是石墨烯最早商用的一大重要领域。之前美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源汽车电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。

由于高导电性、高强度、超轻薄等特性,石墨烯在航天军工领域的应用优势也是极为突出的。前不久美国NASA开发出应用于航天领域的石墨烯传感器,就能很好的对地球高空大气层的微量元素、航天器上的结构性缺陷等进行检测。而石墨烯在超轻型飞机材料等潜在应用上也将发挥更重要的作用。

发展前景

全球市场

美国俄亥俄州的Nanotek仪器公司利用锂电池在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新的电池。这种新的电池可把数小时的充电时间压缩至短短不到一分钟。分析人士认为,未来一分钟快充石墨烯电池实现产业化后,将带来电池产业的变革,从而也促使新能源汽车产业的革新。

2013年初,美国加州大学洛杉矶分校的研究人员就开发出一种以石墨烯为基础的微型超级电容器,该电容器不仅外形小巧,而且充电速度为普通电池的1000倍,可以在数秒内为手机甚至汽车充电,同时可用于制造体积较小的器件。[6] 

微型石墨烯超级电容技术突破可以说是给电池带来了革命性发展。当前主要制造微型电容器的方法是平板印刷技术,需要投入大量的人力和成本,阻碍了产品的商业应用。以后只需要常见的DVD刻录机,甚至是在家里,利用廉价材料30分钟就可以在一个光盘上制造100多个微型石墨烯超级电容。

正是看到了石墨烯的应用前景,许多国家纷纷建立石墨烯相关技术研发中心,尝试使用石墨烯商业化,进而在工业、技术和电子相关领域获得潜在的应用专利。欧盟委员会将石墨烯作为未来新兴旗舰技术项目,设立专项研发计划,未来10年内拨出10亿欧元经费。英国政府也投资建立国家石墨烯研究所(NGI),力图使这种材料在未来几十年里可以从实验室进入生产线和市场。

20151月,西班牙Graphenano公司(一家以工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池,其储电量是目前市场最好产品的三倍,用此电池提供电力的电动车最多能行驶1000公里,而其充电时间不到8分钟。Graphenano公司计划于2015年将此电池投入生产,并且计划与德国四大汽车公司中的两家(现在还不方便透露公司名称)将在本月和电动汽车进行试验。[7] 

韩国研究人员在硅基底上成功合成了晶片级的高质量多层石墨烯。该方法基于一种离子注入技术,简单而且可升级。这一成果使石墨烯离商业应用更近一步。晶片级的石墨烯可能是微电子线路中一个必不可少的组成部分,但大部分石墨烯制造方法都与硅微电子器件不兼容,阻碍了石墨烯从潜在材料向实际应用的跨越。[8] 

美国普渡大学(Purdue University)正在研究通过新的、更加简单的方式制造纳米电极材料的工艺。该大学的研究表明,在电池中使用纳米材料,将会增加电池的充电容量和充放电速度。
  目前,韩国的三星电子也在从事旨在硅表面添加石墨烯涂层的硅基阳极物质的研究。如果该研究能够取得成功,锂离子蓄电池的寿命将会提高到2倍以上。
  该研究综合了硅基材料寿命长和石墨烯材料充电容量大的优点,重点解决如何在硅基材料上建立石墨烯涂层的工艺化问题。
  三星的研究人员通过在碳化硅电极的表面涂布石墨烯涂层,有效地扩展了阳极的表面积。同时与阴极所使用的锂钴氧化物进行组合,使电池的充电电源的单位体积能量密度油料较大的提高,其寿命也增加到母线市场销售的锂离子蓄电池的1.5-1.8倍。
  201592日,据日本的科学技术振兴机构(JST)与日本东北大学的原子分子材料科学高等研究机构(AIMR)发表,在作为下一代蓄电池而被热切期待的锂空气电池中,通过使用具备三维构造的多孔材质石墨烯作为阳极材料,获得了较高的能量利用效率和100次以上的充放电性能。如果电动车使用这种新型电池,则巡航里程将从目前的200公里左右增加到500-600公里左右。[9] 

中国方面

中国在石墨烯研究上也具有独特的优势,从生产角度看,作为石墨烯生产原料的石墨,在我国储能丰富,价格低廉。另外,批量化生产和大尺寸生产是阻碍石墨烯大规模商用的最主要因素。而我国最新的研究成果已成功突破这两大难题,制造成本已从5000/克降至3/克,解决了这种材料的量产难题。利用化学气相沉积法成功制造出了国内首片15英寸的单层石墨烯,并成功地将石墨烯透明电极应用于电阻触摸屏上,制备出了7英寸石墨烯触摸屏。

中科院重庆绿色智能技术研究院的研究人员在展示单层石墨烯产品的超强透光性和柔性。

中国石墨烯产业技术创新战略联盟率领贝特瑞、正泰集团、常州第六元素、亿阳集团等四家上市公司的代表参加了西班牙的石墨烯会议,并分别与意大利、瑞典代表团签订了深度战略合作协议,为石墨烯全球并购,中国整合战略打响了第一枪。此外,3月初全球首批3万部量产石墨烯手机在重庆发布,开启了石墨烯产业化应用的新时代。石墨烯入选十三五新材料规划已经基本落定,预计2015年将成为中国石墨烯产业爆发元年。[10] 

2014320日,中国科学院山西煤炭化学研究所陈成猛课题组与清华大学中科院金属研究所相关团队合作,成功研制出高导热石墨烯/炭纤维柔性复合薄膜,其厚度在10~200 μm之间可控,室温面向热导率高达977 W/m·K,拉伸强度超过15 MPa[11] 

20141126日,中国科学技术大学吴恒安教授、王奉超特任副研究员与安德烈-海姆教授课题组及荷兰内梅亨大学研究人员合作,在石墨烯等类膜材料输运特性研究方面首次发现,石墨烯可以作为良好的质子传导膜,国际顶尖学术期刊《自然》在线发表了这一研究成果。

20150302日,全球首批3万部石墨烯手机在渝发布,该款手机采用了最新研制的石墨烯触摸屏、电池和导热膜,可接受官方预定,16G售价2499元。其核心技术由中国科学院重庆绿色智能技术研究院和中国科学院宁波材料技术与工程研究所开发。[12] 

2015518日,国家金融信息中心指数研究院在江苏省常州市发布了全球首个石墨烯指数。指数评价结果显示,全球石墨烯产业综合发展实力排名前三位的国家分别是美国、日本和中国。[13] 

20155月,南开大学化学学院周震教授课题组发现一种可呼吸二氧化碳电池。这种电池以石墨烯用作锂二氧化碳电池的空气电极,以金属锂作负极,吸收空气中的二氧化碳释放能量。[14] 

20156月,南开大学化学学院陈永胜教授和物理学院田建国教授的联合科研团队通过3年的研究,获得了一种特殊的石墨烯材料。该材料可在包括太阳光在内的各种光源照射下驱动飞行,其获得的驱动力是传统光压的千倍以上。该研究成果令光动飞行成为可能。[15] 

201510习近平访英期间,华为与英国曼彻斯特大学共同宣布将在石墨烯领域展开研究。[16] 

据工信部网站1130日消息,为引导石墨烯产业创新发展,助推传统产业改造提升、支撑新兴产业培育壮大、带动材料产业升级换代,发改委、工信部、科技部等三部门印发关于加快石墨烯产业创新发展的若干意见。[17] 

为加快推进京津冀石墨烯产业发展,培育新的产业增长点,20151220日,京津冀石墨烯产业发展联盟在京成立,未来将形成以河北唐山为中心,跨越京津冀等地区,集生产、研发、检验检测、融资服务等为一体的石墨烯产业集群,形成京津冀战略性新兴产业高地。预计到2017年底,将实现20亿元以上的年产值。[18] 

2016427日全球首款在广州宣布成功研发问世,这一技术将电子纸的性能提升到一个新的高度,也为石墨烯的产业化开创了一个全新的空间,标志着我国在石墨烯应用上已经走在了世界的前沿。

在历时近一年历经艰辛的研制过程后,广州奥翼与重庆墨希共同开发出能够替换ITO薄膜的石墨烯薄膜,以及相应的电子墨水配方和涂布工艺,使电子墨水能够涂覆于石墨烯薄膜上形成石墨烯电子纸。

该石墨烯电子纸可与柔性或刚性驱动底板相结合,制作出刚性石墨烯电子纸显示屏和超柔性石墨烯电子纸显示屏。该石墨烯电子纸与传统的电子纸相比,具有弯曲能力更强,强度更高;相对比ITO薄膜,采用石墨烯不但能降低产品成本,而且石墨材料取之不竭;此外,由于石墨烯材料的透光率高,将会使电子纸显示的亮度更好。奥翼预计半年内能够实现对石墨烯电子纸的量产。[19] 

主要影响

由于其独有的特性,石墨烯被称为神奇材料,科学家甚至预言其将彻底改变21世纪曼彻斯特大学副校长Colin Bailey教授称:石墨烯有可能彻底改变数量庞大的各种应用,从智能手机和超高速宽带到药物输送和计算机芯片。

 


石墨烯被世界誉为“神奇材料”

2016年10月9日 08:00
返回首页
返回新闻资讯